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aLaboratoire de Physique de l’Université de Bourgogne, Groupe d’Optique de Champ Proche, CNRS UMR 5027,

9 Avenue Alain Savary, BP 47870 F-21078 Dijon, France
bLERMPS, Université de Belfort-Montbeliard, Site de Sévenans, Belfort 90010, France

cComputational Materials Science Laboratory, Department of Physics, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria

Received 3 December 2003; accepted 22 January 2004

Abstract

In this paper we propose a new hybridization scheme for numerical simulation based on the determinantal quantum Monte Carlo and

analytical model to treat the vibration mode of one-dimensional trans-polyacetylene chain. We use both of the extended Hubbard model

(EHM) and Peierls–Hubbard model to compute the specific heat for different assumptions. For both the two models, our results indicate that

the behavior of the specific heat is characterized by a maximum. We also introduce the effect of dimerization through Peierls–Hubbard

model. In this case it is found that the specific heat magnitude is slightly more important when compared to specific heat value found with the

EHM case. Moreover the inclusion of electron–phonon interaction, the bond alternation and dimerization give an explication to the existence

of quantum fluctuations, which may be associated to the existence of soliton solutions of the lattice vibration. The important result of this

study is that the analytical ground state preserves size consistency and can be generalized for other geometries (e.g. cis-polyacetylene,

polyacene, etc.), while still being both easy to interpret and to evaluate accurately.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The richness of organic chemistry data, which was

devoted originally to develop the idea of ‘the plastics that

conduct’, has been used widely to develop several

experimental and theoretical considerations to treat poly-

mers. The theory of conjugated polymers, developed for

exploring properties of the recent interest in these materials

and the related synthetic metals [1,2] has achieved an

important step in the area of the debate between electron–

electron (e–e) and electron–phonon (e–ph) interactions in

the behavior of polymers [3]. Among theoretical works, the

model Hamiltonians [4]. The primary simplifications given

by these Hamiltonians vis-a-vis the ab-initio methods, when

one consider only some of the degrees of freedom, leading

to a reduced set of parameters which cannot be reliable to

describe the reality of the considered systems. A panoply of

model Hamiltonians, describing the interactions, was

proposed in aims to overcome the difficulty of deriving

the form of the interactions parameters from the underlying

microscopic theory. Two approaches were adopted: first, for

small systems, the ground state and low lying excitation

states are calculated for the parametrized model Hamilton-

ians by adjusting the parameters of the model so as to

reproduce the ab-initio results. The second approach is

based on the phenomenological method to calculate

physical quantities such as electronic energies [5,6] or

optical absorption spectrum. Adjustable parameters are

determined by comparing the calculated quantities with

experiments [7]. The importance of this problem is granted

by the fact that this kind of interactions is the most probable

process leading to the formation of excited states which

recombine radiatively to the ground state, explaining many

macroscopical behaviors (e.g. the electroluminescence

observed in the conjugated polymers) [8].
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In this work, we detail a new approach based on the

hybridization of an analytical model given by Jia-xin Xiao

[9] and the efficient determinantal Monte Carlo (dQMC)

technique, which has been applied to fermionic systems by

Blakenbecler, Scalapino, Sugar and Hirsch (BSSH algor-

ithm) [10]. As a first application, we calculate the ground

state properties of the extended Hubbard model (EHM).

With the present scheme we are particularly, interested in

the calculation of the specific heat observable. The specific

heat exhibit an anomalous contribution which confirm the

validity of the proposed hybridization approach.

The paper is organized as follows: in Section 2 we

describe the model and the numerical method used in the

present study. Section 3 is devoted to discussion of our main

results. A general summary and conclusions are given in

Section 4.

2. Model and calculation

2.1. The one dimensional extended Hubbard model (EHM)

The Hamiltonian is taken as in Ref. [11]:

H ¼ Hph þ He þ Hint ð1Þ

where Hph is the contribution of the lattice motion:

Hph ¼
M

2

X
i

_R2
i þ

K

2

X
i

ðRiþ1 2 RiÞ
2 ð2Þ

in which M is the mass of the lattice atom, K the elastic

constant of the lattice, Ri the position of the ith lattice site

is given by Ri ¼ �RiðtÞ þ uiðtÞ; where �Ri and ui are the

equilibrium position and displacement, respectively.

He is the contribution of the electrons subsystem, which

includes the electron transfer at adjacent sites, the inter-

action between electrons at the same lattice site, and the

chemical potential of electrons m as follows:

He ¼
X
ils

Elnl
is þ

X
ijlhs

t
lh
ij clþjs c

h
js þ

X
il

Ulnl
i"n

l
i#

2m
X
ils

nl
is

ð3Þ

where the indices i; j label the spatial sites.

l;h label the different atoms in a given site, and s is a

spin index ðs ¼"#Þ; clþjs ðcljsÞ are creation (annihilation)

operators and nl
is ¼ clþjs cljs; El; represents the repulsive

interaction between electrons within an elementary cell; t
lh
ij ;

is the transition matrix, which is introduced from the Hückel

theory representing the degree to which the p-orbitals on

adjacent atoms in a chain overlap [12]. In the nearest-

neighbor approximation we take:

t
lh
ij ¼ t

hl
ij ;i; j; l;h ð4Þ

and the transitional invariance:

t
lh
ij ¼ t

hl
ij ðRi 2 RjÞ ð5Þ

Ul are the on-site Coulomb coupling between fermions.

The interaction between an electron and the phonon is

given by:

Hint ¼ I
X
i;s

�
ðui;s 2 uiþ1;sÞðc

lþ
is Þc

h
iþ1s þ ðc

h
iþ1;sÞ

þclis

þ ðcliþ1;sÞ
þc

h
i;s þ ðc

h
i;sÞ

þcliþ1;s

�
ð6Þ

where I denotes the coupling constant.

For background we will first deal with the vibration

model of the Hubbard chain and then the contribution to the

specific heat due to this vibration. As a first hypothesis, we

suppose that the ground state is antiferromagnetic [13] and

the lattice is divided into equivalent ferromagnetic sub-

lattices A and B, then the resulting magnetic moment is zero

in the absence of an external magnetic field.

If the ground state of the system is the antiferromagnetic

with spin zero, the wave function of the low excitation state

can be taken as [9]:

lCl ¼ lC1lþ lC2l ð7Þ

where lC1l denotes the excitation state of a single electron

and take the following form:

lC1l ¼
X
n;s

an;sðtÞC
þ
n;slC0l ð8Þ

where an;sðtÞ is the probability amplitude of an electron

excitation with spin s at the nth site. lC0l is the

antiferromagnetic ground state.

The basic idea is to start with a state lC0l; that is a first

approximation to the full ground state lCl: So, we can write

the wave function of a double electron excitation in the

lattice chain as follows:

lC2l ¼
X

m;n;s1;s2

bm;s1;n;s2
ðtÞCþ

m;s1
Cþ

n;s2
lC0l ð9Þ

where bm;s1;n;s2
corresponds to the probability amplitude of

the excitation state in which there is one electron with spin

s1 at the mth lattice site and another electron with spin s2 at

the nth lattice site.

Substituting Eqs. (1) and (7) into the Schrödinger

equation, we get the following expression:

i
›

›t
lCl ¼ HlCl ð10Þ

2.2. The quasi-continuous approximation

Let us consider a0 to be the lattice constant. By taking the

quasi-continuous approximation, we can introduce the new
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set of variables:

n ! j

m ! h

unðtÞ ¼ RnðtÞ2 �Rn ! uðj; tÞ; an;sðtÞ! aðj; tÞ; and bm;s1;n;s2

! bs1;s2
ðj;h; tÞ

We have

Rn ¼ a0½uðj; tÞ^ uj þ
1
2

ujj þ · · ·�

anþ1;s ! an;2s ^ a0
n;2s þ

1
2
a0

n;2s þ · · · ! a2sðj; tÞ

^ a0
2sðj; tÞ þ

1
2
a0
2sðj; tÞ þ · · ·

bn^1;s;m;s0 ! b2s;s0 ðj;h; tÞ^
›

›j
b2s;s0 ðj;h; tÞ þ 1

2

›2

›j2


b2s;s0 ðj;h; tÞ þ · · ·

bn;s;m^;s0 ! b2s;s0 ðj;h; tÞ^
›

›h
b2s;s0 ðj;h; tÞ þ 1

2

›2

›h2


b2s;s0 ðj;h; tÞ þ · · ·

If we assume that occupied number of the electron at every

site n ¼ la"l
2
þ la#l

2
¼ const; we obtain the equation of

motion of asðj; tÞ and bs;s0 ðj;h; tÞ from Eq. (10), respect-

ively,

i" _asðj; tÞ ¼ ðW 2 mÞasðj; tÞ þ
V

2
la2sl

2
as

þ �t 2 I
›uðj; tÞ

›j

� �


 2a2sðj; tÞ þ
›2

›j2
a2sðj; tÞ

" #
ð11Þ

i" _bsðj;h; tÞ ¼ ðW 2 2mþ Vdm;nds1;s2
Þbs1;s2

ðj;h; tÞ

þ 2�t 2 2I
›u

›j

� �


 2b2s1;s2
ðj;h; tÞ þ

›2

›j2
b2s1;s2

ðj;h; tÞ

" #

ð12Þ

where W is the average value of the lattice vibration energy.

The motion equation of the lattice vibration can be obtained

from the average energy of the system by the canonical

equations of the classical mechanics. d is Kronecker

function.

�H ¼ kClHlCl ð13Þ

From:

M €uj ¼ _Pj ¼
› �H

›uj

ð14Þ

We have:

M €uðj; tÞ ¼ Kujj 2 2I
X
s

›

›j
ðap

sasÞ2 8I
X
s;s0

ð
dh

›

›j


 ðbp
2s;s0b2s;s0 Þ ð15Þ

By taking the travel wave solution uðj; tÞ ¼ ðj2 vtÞ and

letting v2
0 ¼ K=M: Then we have:

€u ¼ v2
0ujj 2

2I

a0M



X
s;s0

›

›j
ðap

sasÞ þ 4
X
s;s0

ð
dh

›

›j
ðb2s;s0b2s;s0 Þ

2
4

3
5 ð16Þ

By integrating the above equation with respect to j , we

obtain the following expression:

ujðj; tÞ ¼ 2
2I

a0Mðv2 2 v2
0Þ



X
s

ðap
sasÞ þ 4

X
s;s0

ð
dh

›

›j
ðbp

2s;s0b2s;s0 Þ

2
4

3
5

þ C

ð17Þ

C is a constant associated with the initial condition.

Eqs. (11), (12) and (17) are the motion equations of the

electron state and the lattice. The single-electron excitation

approximation allow us to write [14]:

lCl ¼ lC1l ð18Þ

If the average occupation number n is a constant [15], then

the solution can be written as:

a" ¼
1
2
ðCð1Þ þCð2ÞÞ ð19Þ

a# ¼
1
2
ðCð1Þ 2Cð2ÞÞ ð20Þ

where:

Cð1Þ ¼
ffiffiffi
2n

p
sech

nðV 2 I 0Þ1=2

T
ðj2 vtÞ

" #

exp
ivj

2T
2 iv1t

� �
ð21Þ

Cð2Þ ¼
ffiffiffi
2n

p
tanh

nðV 2 I 0Þ1=2

T
ðj2 vtÞ

" #

exp
ivj

2T
2 iv2t

� �
ð22Þ

In which:

I 0 ¼ 2
2I

a0Mðv2 2 v2
0Þ
; T ¼ �t 2 a0IA ð23Þ
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v1 ¼ 2T þ W 2 m2
v2

4T
and v2

¼ 22T þ W 2 m2 ðV 2 I 0Þ þ
v2

4T

Using the above expressions one can find
P

s a
p
sas:

Substituting it into Eq. (16) we obtain the motion equation

of the lattice vibration in the excitation state of the single

electron:

€u 2 v2
0ujj þ v2

0

d

du
V1 ¼ 0 ð24Þ

where:

V1 ¼
b

4
u2 2

1

b

� �2

2
1

4b
; g2 ¼

nðV 2 I 0Þ

T
; b

¼
a2

0M2ðv2
0 2 v2Þg2

16n2I2
¼

1

C2
; v2

0 ¼ 2g2ðv2
0 2 v2Þ ð25Þ

We notice that u satisfies the equations of f4-field, and

hence it should have the well-known soliton solution as:

u ¼ C tanh gðj2 vtÞ
� �

ð26Þ

2.3. Determination of the anharmonic vibration by dQMC

technique

It is well known that the anharmonic vibration contri-

butes to the specific heat [16]. Next we investigate this

contribution using dQMC simulation method.

For the vibration system of the f4-field due to the single-

electron excitation lC1l the Hamiltonian can be written as:

H ¼
ð

dj
1

2
_u2 þ

1

2
v2

0ujj 2 v2
0V1ðuÞ

� �
ð27Þ

where V1ðuÞ is given by Eq. (24). We can use the method of

standard statistical physics to study of thermodynamics

properties given by the above equation. In other words, we

can write the partition function [15] of the part of the lattice

vibration from Eq. (27) as:

Z ¼
ðYN

i¼1

dPi

ðYN

i¼1

duiexpð2bHÞ ð28Þ

However, the novelty in our work, will be in using of the

BSSH algorithm [10] for computing the partition function

Z:

It is well known that a large variety of methods have been

developed for treating the many body problem defined by

Eq. (1). Here we shall use the determinantal version of

quantum Monte Carlo method [17]. Using Trotter approxi-

mation in separating the one-particle and two-particle terms

and dividing the imaginary time interval ½0;b� into L

subintervals of width Dt ¼ b=L; the partition function may

be written as:

Z ¼ Trðe2bĤÞ ¼ Tr
YL

i¼1

e2DtĤ < Tr
YL

i¼1

e2DtĤ0 e2DtĤ1 ð29Þ

To eliminate the two-body interaction term, we use the

discrete Hubbard–Stratonovich transformation [14] using

the identity:

Tr expð2cþi AijcjÞexpð2cþi BijcjÞ ¼ detð1 þ e2Ae2BÞ ð30Þ

for arbitrary matrices A and B and taking the trace over

fermions [15], one obtains the following expression:

Z ¼ Trs
Y

a¼^1

YL

l¼1

1 þ BLðaÞBL21ðLÞ· · ·B1ðaÞ
� �

ð31Þ

¼ TrsdetO"detO# ð32Þ

where Os is an NL £ NL matrix

Os ¼ 1 þ
YL

l¼1

Bs
l ðaÞ ð33Þ

BlðaÞ ¼ exp 2DtK½ �exp VaðlÞ
� �

ð34Þ

where:

Ki;j ¼
2tð. 0Þ for i; j nearest neighbor

0 otherwise

Va
ij ðlÞ ¼ dij lasiðlÞ þ Dtðm2

U

2
Þ

� �
ð35Þ

l ¼ cosh21ðDt
U

2
Þ ð36Þ

To perform the Monte Carlo simulation, we can take the

determinant in Eq. (4) as the Boltzmann weight. For the case

of half-filled band, the product in Eq. (4) is positive for

arbitrary s configurations [18]. In this case the heat-bath

algorithm is used to perform the sum over Ising spins.

Suppose, Ra is the ratio of new to old determinant for

fermion spin a on flipping a given Ising spin, the flipping

probability for this is given by:

P ¼
R"R#

1 þ R"R#

ð37Þ

Ra can be computed by using the procedure introduced by

Blakenbecler, Scalapino and Sugar [19], which involves

updating the Green’s function when a move is accepted.

Therefore, measurements of statistical averages of many

observable can be performed.

2.4. Statistical averages of the ground state properties of a t-

PA chain

In the following section we describe in detail how to

evaluate the ground state energies, for the t-PA chain. We

must recall, that all the physical observables are calculated

for a chain consisting of 64 sites (see Fig. 1). Therefore, the
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calculations are done for the half-filled case (i.e. m ¼ U=2).

For explicit calculations the following typical set of values

for the parameters involved in Eq. (1) will be used [20], the

selected set of parameters are: t ¼ 2:5ðeVÞ; and the value of

the bandwidth is taken as D ¼ 4t ¼ 10ðeVÞ [21,22]. We

note that in this work we have treated three regimes (i.e.

U . 4t;U , 4t and U g 4t) and for all these cases we are

interested to the specific values of E: (E g U; E g U=2;

E . U=2; E , U=2), respectively.

Averaging over the MC samples a large number of

observables can be calculated. We list here just the

following quantities: kinetic, potential and total energy

given by the following expressions:

Kinetic energy:

K ¼
X

ijlhs

t
lh
ij kclþis c

h
islMC ð38Þ

Potential energy:

V ¼
X
il

Ulkn
l
i"n

l
i#lMC ð39Þ

Total energy:

kHl ¼ K þ V þ
X
ils

Elkn
l
islMC ð40Þ

To study the variation of energy and their respective mean

fluctuations versus both b and specific sets of correlation

parameters (U and E), several results are reported in

Figs. 2(a)– (c), 3(a)– (c), and 4(a)– (c), for ðU ¼ 10;

E ¼ 5; 8; 10; 13ðeVÞÞ; ðU ¼ 14;E ¼ 5; 7; 9; 14ðeVÞÞ; and

ðU ¼ 6;E ¼ 2; 3; 6ðeVÞÞ; respectively.

3. Numerical results and general discussion

In Section 2.4 we have described how to obtain ground

state energies of some Hamiltonian parameters (regimes).

In this section we describe a successful application of the

approach to the EHM by calculation of the specific heat for

both cases dimerized and undimerized polymeric chain.

3.1. Specific heat of an undimerized t-PA chain

We consider here the calculation of the specific heat for

an undimerized polymer chain (see Fig. 1), which is pro-

portional to the fluctuation of energy and may be obtained

directly from the thermal fluctuations, using the following

equation:

C ¼ ðkBT2Þ21ðkE2l2 kEl2Þ ð41Þ

In this work, we have calculated the specific heat after

evaluating the internal energy E of the system [20]. The

temperature dependence of the specific heat of a t-PA chain

at typical values of E can be observed in Fig. 5(a)–(c).

Comparing these figures, one can easily notice how the

features of the specific heat versus the inverse temperature

varies with the relative magnitude of U to D:

The specific heat has a peak at a relative low temperature,

suggesting a rearrangement of energy levels. It is also

believed that the low temperature peak arises from the

antiferromagnetic short-range ordering [23]. This con-

clusion is supported by the calculations of other thermal

properties and correlation functions [24–26].

3.2. Dimerized t-PA chain

It is well known that the t-PA polymer is defined as a

Fig. 1. Schematic illustration of the unit cell of trans-polyacetylene used in

simulation (first assumption).

Fig. 2. (a)– (c) Kinetic, potential and total energy versus inverse

temperature for ðU ¼ 10;E ¼ 5; 8; 10; 13Þ (eV).
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quasi-one dimensional compound with a carbon backbone

characterized by two types of bonds (single and double).

Fig. 6, shows the calculation of the specific heat for

dimerized polymeric chain in which we take two carbon

atoms and two hydrogen atoms per unit cell. We consider

also, the effect of bond alternation, and dimerization.

First the effect of interaction parameters (U and E) on

dimerization are examined. We investigate the regime of

weak to strong coupling U, that is U . 4t:

We show in Fig. 7(a) and (b) the electronic energy gained

at fixed dimerization parameter ðd ¼ 0:035 �AÞ (i.e. the bond

order wave (BOW) condensate energy DEg) as a function of

E for different values of U at fixed temperature (b ¼ 0:4 and

1.0), respectively. Our results agree with calculations done

by density-matrix renormalization group methods (DMRG)

[27] and exact diagonalization [28]. These figures show that

the only difference lies in the magnitude and the position of

the peaks, which may be caused by the open boundary

conditions and the effect of simulation parameters. As the

temperature decreases, energies gradually decrease. This

feature can be explained by the gradual delocalization of

electrons as the temperature decreases [16,24]. Note that the

energy increases from U ¼ 0 and reaches a maximum at

1.4s eV. The effect of E is to increase DEg at fixed values of

U for the relevant values of b ¼ 0:4 and 1.0, respectively.

This gain in BOW condensation energy is translated directly

into an increasing tendency to dimerization [29].

The numerical calculation performed in this work

supports the qualitative valence bond (VB) predictions

[30,31]. Indeed, for the relevant ranges of parameters the

bond-alternation is found to increase with the strength of the

effective ðUÞ Coulomb interactions in the Extended Peierls–

Hubbard model.

This is also confirmed by the calculation of the total

energy versus E for different values of U and b; respectively

(see Fig. 8(a) and (b)). Therefore, we use Eq. (41) to

calculate the specific heat, for the case of Hubbard (solid

Fig. 3. (a)– (c) Kinetic, potential and total energy versus inverse

temperature for ðU ¼ 14;E ¼ 5; 7; 9; 14Þ (eV). Fig. 4. (a)–(c) Kinetic, potential and total energy versus inverse

temperature for ðU ¼ 6;E ¼ 2; 3; 6Þ (eV).

S. Goumri-Said, H. Aourag / Polymer 45 (2004) 2443–24512448



lines) and Peierls–Hubbard (dot lines) models displayed in

Fig. 9(a) and (b) for b ¼ 0:4 and 1.0, respectively.

Our results show that the specific heat magnitude

performed by the Peierls–Hubbard model calculation is

more important compared to that computed by the Hubbard

model. This may be explained by the fact that when both of

e–ph interaction and bond alternation are included, an

increase of quantum fluctuations is observed. Moreover for

b ¼ 1:0 the appearance of the peaks in specific heat curve

may indicate an existence of a phase transition, which is also

influenced by the variation of the parameters ðU;EÞ as it is

shown in Fig. 8(b), where the peak is more pronounced for

U=4t ¼ 1:4:

We can confirm these results by predictions through

the analytical calculation based on Sine–Gordon model

[32,33], for which the appearance of the peak in both energy

fluctuations and specific heat, is due to the existence of non-

linear excitations or more specifically solitons.

From the definition of solitary spin waves in a polymeric

chain, we are able to give a definite interpretation of this

behavior. The analytical theories relate the specific heat

maximum to the structure of the spin-wave, but the validity

Fig. 5. (a) The variation of the specific heat versus b for ðU ¼ 10;V ¼

5; 8; 10; 13Þ (eV). (b) The variation of the specific heat versus b for ðU ¼

14;V ¼ 5; 7; 9; 14Þ (eV). (c) The variation of the specific heat versus b for

ðU ¼ 6;V ¼ 2; 3; 6Þ (eV).

Fig. 6. Schematic illustration of the unit cell of trans-polyacetylene used in

the simulation (second assumption).

Fig. 7. (a) The magnitude of the electronic energy difference between a

dimerized and an undimerized chain for b ¼ 0:4: (b) The magnitude of the

electronic energy difference between a dimerized and an undimerized chain

for b ¼ 1:0:
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of these theories is reliable only under certain conditions

such as: temperature, correlation parameters, and other

chemical consideration for example size of the system

(number of monomers) and the nature of unit cell which

depend on the isomerization.

4. Conclusion

We have described in detail a straightforward hybridiz-

ation of the determinantal quantum Monte Carlo to the

analytical treatment to study the vibration mode of a quasi-

one dimensional trans-polyacetylene chain by the EHM.

We have paid attention to the soliton contribution to the

specific heat for the lattice vibration. In the anharmonic

vibration case, we have calculated the partition function

using the BSSH algorithm without the need of the standard

statistical method. Indeed the present algorithm works for

the grand canonical ensemble and all the sources of

systematic error can be controlled with a rigorous approach

both for computing the ground state energies and for

computing the specific heat observable. This may be a more

efficient implementation of an analytical model, with a

rather more powerful algorithm. We believe that the

reported accuracy gives a very robust confirmation of the

existence of antiferromagnetic short range order in the one-

dimensional Hubbard model.

As a consequence, for a good comparison between

theoretical works, one should conclude that the question

about the influence of soliton on the behavior of correlation

function on t-PA and/or polymeric chain remains still open

because the specific heat maxima are not necessary unique

feature of the existence of soliton, but it may also due to the

different phase transitions which are not accessible by the

analytical calculations.

We conclude that a detailed understanding of excitation

properties of soliton containing systems can be obtained

only when many-particles effects are taken into account.

The calculations presented here are enough to obtain quali-

tative agreement with recent literature. In order to improve

the results, one probably has to work with size-consistent

methods, but still at the quantum level since it is essential

for the accuracy and quality of the results that the calcu-

lations be performed on large systems. For comparison with

experimental data on small model molecules of the polymer,

however, ab-intio calculation will be of great importance.
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